High-Temperature Oxidation of Fe3Al Intermetallic Alloy Prepared by Additive Manufacturing LENS
نویسنده
چکیده
The isothermal oxidation of Fe-28Al-5Cr (at%) intermetallic alloy microalloyed with Zr and B (<0.08 at%) in air atmosphere, in the temperature range of 1000 to 1200 °C, was studied. The investigation was carried out on the thin-walled (<1 mm) elements prepared by Laser Engineered Net Shaping (LENS) from alloy powder of a given composition. Characterization of the specimens, after the oxidation, was conducted using X-ray diffraction (XRD) and scanning electron microscopy (SEM, with back-scatter detector (BSE) and energy-dispersive X-ray spectroscopy (EDS) attachments). The investigation has shown, that the oxidized samples were covered with a thin, homogeneous α-Al₂O₃ oxide layers. The intensity of their growth indicates that the material lost its resistance to oxidation at 1200 °C. Structural analysis of the thin-walled components' has not shown intensification of the oxidation process at the joints of additive layers.
منابع مشابه
EFFECTS OF TiO2 ADDITIVE ON ELECTROCHEMICAL HYDROGEN STORAGE PROPERTIES OF NANOCRYSTALLINE /AMORPHOUS Mg2Ni INTERMETALLIC ALLOY
Abstract: Mg2Ni alloy and Mg2Ni–x wt% TiO2 (x = 3, 5 and 10 wt %) composites are prepared by mechanical alloying. The produced alloy and composites are characterized as the particles with nanocrystalline/amorphous structure. The effects of TiO2 on hydrogen storage properties are investigated using anodic polarization and electrochemical impedance spectroscopy. It is demonstrated that the initia...
متن کاملThe Microstructure Evolution of a Fe3Al Alloy during the LENS Process
A Fe₃Al intermetallic alloy has been successfully prepared by the laser-engineered net shaping (LENS) process. The applied process parameters were selected to provide various cooling rates during the solidification of the laser-melted material. The macro- and microstructure and the micro- and macrotexture of Fe₃Al samples were investigated. The influence of the cooling rate on grain morphology ...
متن کاملMicrostructure and Properties of Iron Aluminide Coatings
Corrosion-resistant coatings based on the iron aluminide intermetallic compound Fe3Al are currently being investigated for fossil energy applications. Fe3Al possesses excellent intrinsic high-temperature oxidation and sulfidation resistance, and a significant effort has been made in the development of bulk alloys based on it. While substantial progress has been made, the widespread use of these...
متن کاملHigh-temperature Corrosion Behavior of Iron Aluminide Alloys and Coatings
A multi-year effort has been focused on optimizing the long-term oxidation performance of ingot-processed (IP) and oxide-dispersion strengthened (ODS) Fe3Al and iron aluminidebased coatings. Based on results from several composition iterations, a Hf-doped alloy (Fe28Al-2Cr-0.05at.%Hf) has been developed with significantly better high temperature oxidation resistance than other iron aluminides. ...
متن کاملHigh Temperature Corrosion Behavior of HVOF, Fe3Al Coatings
This work evaluates the suitability of iron aluminide coatings for use in high temperature fossil fuel combustion environments, such as boiler applications. The coatings are applied using High Velocity Oxy-Fuel (HVOF) thermal spray techniques. Bulk Fe3Al coatings are known to exhibit excellent oxidation and sulfidation resistance at high temperatures, however, the behavior of HVOF-deposited Fe3...
متن کامل